F1 | BRAKE CIRCUIT IDENTITY CARDS

2016 F1 SINGAPORE AIRLINES SINGAPORE GP

16-18 SEP 2016

MARINA BAY STREET CIRCUIT (SINGAPORE)

CIRCUIT DATA

Length: 5,073 m

Number of laps: 61
Number of brake zones/lap: 13

COMMENT

As they pick their way through the turns and chicanes on the Singapore Street Circuit the drivers are well aware that they will need to put a lot of stress on their single-seater's brakes with almost a full fourth of the time spent on them.
Of the 13 braking sections that characterise this circuit, non of them are particularly demanding, but the heated pace and the lack of adequate space for cooling make it one of the hardest on the braking systems. Friction material wear is one of the things that need to be monitored constantly in telemetry during each lap of the race.

* Turn 07 is considered the most demanding for the braking system.
, 2155 kg

01

Initial speed	321	$(\mathrm{Km} / \mathrm{h})$
Final speed	128	$(\mathrm{Km} / \mathrm{h})$
Stopping distance	112	$(\mathrm{~m})$
Braking time	1.22	(sec)
Maximum deceleration	4.9	$(\mathrm{~g})$
Maximum pedal load	151	(Kg)
Braking power	2073	(Kw)

05

Initial speed	269	$(\mathrm{Km} / \mathrm{h})$
Final speed	123	$(\mathrm{Km} / \mathrm{h})$
Stopping distance	94	$(\mathrm{~m})$
Braking time	1.14	(sec)
Maximum deceleration	3.8	$(\mathrm{~g})$
Maximum pedal load	118	(Kg)
Braking power	1333	(Kw)

O8		
Initial speed	212	$(\mathrm{Km} / \mathrm{h})$
Final speed	70	$(\mathrm{Km} / \mathrm{h})$
Stopping distance	92	$(\mathrm{~m})$
Braking time	1.30	(sec)
Maximum deceleration	2.7	$(\mathrm{~g})$
Maximum pedal load	85	(Kg)
Braking power	677	(Kw)

10

Initial speed	284	$(\mathrm{Km} / \mathrm{h})$
Final speed	117	$(\mathrm{Km} / \mathrm{h})$
Stopping distance	105	$(\mathrm{~m})$
Braking time	1.23	(sec)
Maximum deceleration	4.1	$(\mathrm{~g})$
Maximum pedal load	128	(Kg)
Braking power	1521	(Kw)

14		
Initial speed	293	$(\mathrm{Km} / \mathrm{h})$
Final speed	79	$(\mathrm{Km} / \mathrm{h})$
Stopping distance	121	$(\mathrm{~m})$
Braking time	1.41	(sec)
Maximum deceleration	4.3	$(\mathrm{~g})$
Maximum pedal load	134	(Kg)
Braking power	1649	(Kw)

03

Initial speed	142	$(\mathrm{Km} / \mathrm{h})$
Final speed	85	$(\mathrm{Km} / \mathrm{h})$
Stopping distance	56	$(\mathrm{~m})$
Braking time	0.96	(sec)
Maximum deceleration	1.6	$(\mathrm{~g})$
Maximum pedal load	56	(Kg)
Braking power	199	(Kw)

07*

Initial speed	329	$(\mathrm{Km} / \mathrm{h})$
Final speed	100	$(\mathrm{Km} / \mathrm{h})$
Stopping distance	131	$(\mathrm{~m})$
Braking time	1.42	(sec)
Maximum deceleration	5.1	$(\mathrm{~g})$
Maximum pedal load	155	(Kg)
Braking power	2203	(Kw)

09

Initial speed	197	$(\mathrm{Km} / \mathrm{h})$
Final speed	117	$(\mathrm{Km} / \mathrm{h})$
Stopping distance	62	$(\mathrm{~m})$
Braking time	0.93	(sec)
Maximum deceleration	2.4	$(\mathrm{~g})$
Maximum pedal load	73	(Kg)
Braking power	529	(Kw)

13

Initial speed	172	$(\mathrm{Km} / \mathrm{h})$
Final speed	111	$(\mathrm{Km} / \mathrm{h})$
Stopping distance	58	$(\mathrm{~m})$
Braking time	0.91	(sec)
Maximum deceleration	2.0	$(\mathrm{~g})$
Maximum pedal load	65	(Kg)
Braking power	360	(Kw)

16		
Initial speed	246	$(\mathrm{Km} / \mathrm{h})$
Final speed	87	$(\mathrm{Km} / \mathrm{h})$
Stopping distance	98	$(\mathrm{~m})$
Braking time	1.25	(sec)
Maximum deceleration	3.3	$(\mathrm{~g})$
Maximum pedal load	100	(Kg)
Braking power	1042	(Kw)

F1 | BRAKE CIRCUIT IDENTITY CARDS

2016 F1 SINGAPORE AIRLINES SINGAPORE GP

16-18 SEP 2016

MARINA BAY STREET CIRCUIT (SINGAPORE)

CIRCUIT DATA

Length: 5,073 m
Number of laps: 61
Number of brake zones/lap: 13

COMMENT

As they pick their way through the turns and chicanes on the Singapore Street Circuit the drivers are well aware that they will need to put a lot of stress on their single-seater's brakes with almost a full fourth of the time spent on them.
Of the 13 braking sections that characterise this circuit, non of them are particularly demanding, but the heated pace and the lack of adequate space for cooling make it one of the hardest on the braking systems. Friction material wear is one of the things that need to be monitored constantly in telemetry during each lap of the race.

* Turn 07 is considered the most demanding for the braking system.

20

Initial speed	176	$(\mathrm{Km} / \mathrm{h})$
Final speed	97	$(\mathrm{Km} / \mathrm{h})$
Stopping distance	68	$(\mathrm{~m})$
Braking time	1.04	(sec)
Maximum deceleration	2.1	$(\mathrm{~g})$
Maximum pedal load	68	(Kg)
Braking power	389	(Kw)

22

Initial speed	262	$(\mathrm{Km} / \mathrm{h})$
Final speed	164	$(\mathrm{Km} / \mathrm{h})$
Stopping distance	63	$(\mathrm{~m})$
Braking time	0.86	(sec)
Maximum deceleration	3.6	$(\mathrm{~g})$
Maximum pedal load	115	(Kg)
Braking power	1245	(Kw)

